How to explode multiple columns of a dataframe in pyspark

PySpark has added an arrays_zip function in 2.4, which eliminates the need for a Python UDF to zip the arrays.

import pyspark.sql.functions as F
from pyspark.sql.types import *

df = sql.createDataFrame(
    [(['Bob'], [16], ['Maths','Physics','Chemistry'], ['A','B','C'])],
    ['Name','Age','Subjects', 'Grades'])
df = df.withColumn("new", F.arrays_zip("Subjects", "Grades"))\
       .withColumn("new", F.explode("new"))\
       .select("Name", "Age", F.col("new.Subjects").alias("Subjects"), F.col("new.Grades").alias("Grades"))

| Name| Age| Subjects|Grades|
|[Bob]|[16]|    Maths|     A|
|[Bob]|[16]|  Physics|     B|
|[Bob]|[16]|Chemistry|     C|

Leave a Comment