How to flatten a pandas dataframe with some columns as json?

Here’s a solution using json_normalize() again by using a custom function to get the data in the correct format understood by json_normalize function.

import ast
from import json_normalize

def only_dict(d):
    Convert json string representation of dictionary to a python dict
    return ast.literal_eval(d)

def list_of_dicts(ld):
    Create a mapping of the tuples formed after 
    converting json strings of list to a python list   
    return dict([(list(d.values())[1], list(d.values())[0]) for d in ast.literal_eval(ld)])

A = json_normalize(df['columnA'].apply(only_dict).tolist()).add_prefix('columnA.')
B = json_normalize(df['columnB'].apply(list_of_dicts).tolist()).add_prefix('columnB.pos.') 

Finally, join the DFs on the common index to get:

df[['id', 'name']].join([A, B])


EDIT:- As per the comment by @MartijnPieters, the recommended way of decoding the json strings would be to use json.loads() which is much faster when compared to using ast.literal_eval() if you know that the data source is JSON.

Leave a Comment